# Multi-modal imaging of small vessel disease

Swati Rane Levendovszky

Associate Professor of Radiology Director of Hoglund Biomedical Imaging Center, University of Kansas Medical Center May, 2025



## **Clinical Relevance of Small Vessel Disease (SVD)**

- SVD plays an important role in many conditions such as aging, stroke, cognitive impairment, motor and gait impairment, and mood disorders
- Majority dementia cases have mixed pathologies that primarily includes cerebrovascular small disease
- While amyloid accumulation, a hallmark of AD, causes small vessel pathology, non-amyloid-related small vessel pathology is also abundant and may increase risk of AD
- Vascular cognitive impairment and AD both have common risk factors: diet, physical activity, midlife hypertension, diabetes, inflammation, chronic kidney disease
- No good biomarker for assessing SVD



Love S, Miners JS. Cerebrovascular disease in ageing and Alzheimer's disease. Acta Neuropathol. 2016 May;131(5):645-58. doi: 10.1007/s00401-015-1522-0. Epub 2015 Dec 28. PMID: 26711459; PMCID: PMC4835514. Wardlaw JM, Valdés Hernández MC, Muñoz-Maniega S. What are white matter hyperintensities made of? Relevance to vascular cognitive impairment. J Am Heart Assoc. 2015 Jun 23;4(6):001140. doi: 10.1161/JAHA.114.001140 in: J Am Heart Assoc. 2016 Jan 13;5(1):e002006. PMID: 26104658; PMCID: PMC4599520.

Iturria-Medina Y, Sotero RC, Toussaint PJ, Mateos-Pérez JM, Evans AC; Alzheimer's Disease Neuroimaging Initiative. Early role of vascular dysregulation on late-onset Alzheimer's disease based on multifactorial data-driven analysis. Nat Commun. 2016 Jun 21;7:11934. doi: 10.1038/ncomms11934. PMID: 27327500; PMCID: PMC4919512.

Arvanitakis Z, Capuano AW, Leurgans SE, Bennett DA, Schneider JA. Relation of cerebral vessel disease to Alzheimer's disease dementia and cognitive function in elderly people: a cross-sectional study. Lancet Neurol. 2016 5(9) 934. doi: 10.1016/S1474-4422(16)30029-1. Epub 2016 Jun 14. PMID: 27312738; PMCID: PMC4969105.

#### Imaging markers of SVD



↑ Increased signal ↓ Decreased signal ↔ Isointense signal

Wardlaw, Joanna M et al. "Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration." The Lancet. Neurology vol. 12,8 (2013): 822-38.

## **Revised ATN(/V/I/S) classification**

| Intended Use                                               | CSF                                                     | Plasma                 | Imaging                                                                    |
|------------------------------------------------------------|---------------------------------------------------------|------------------------|----------------------------------------------------------------------------|
| Diagnosis                                                  |                                                         |                        |                                                                            |
| <b>A:</b> (A $\beta$ proteinopathy)                        |                                                         |                        | Amyloid PET                                                                |
| <b>T1:</b> (phosphorylated and secreted AD tau)            |                                                         | p-tau 217              |                                                                            |
| Hybrid ratios                                              | p-tau181/Aβ42,<br>t-tau/Aβ42, Aβ42/40                   | p-tau217/np-tau<br>217 |                                                                            |
| Staging, prognosis, as a                                   | n indicator of biological                               | treatment effect       |                                                                            |
| <b>A</b> : (A $\beta$ proteinopathy)                       |                                                         |                        | Amyloid PET                                                                |
| T1: (phosphorylated and secreted AD tau)                   |                                                         | p-tau 217              |                                                                            |
| Hybrid ratios                                              | p-tau181/Aβ42,<br>t-tau/Aβ42, Aβ42/40                   | p-tau217/np-tau<br>217 |                                                                            |
| T <sub>2</sub> : (AD tau proteinopathy)                    | pT205, MTBR-243,<br>non-phosphorylated<br>tau fragments | pT205                  | Tau PET                                                                    |
| N (injury to or<br>degeneration of<br>neuropil)            | NfL                                                     | NfL                    | Anatomic MR,<br>FDG PET                                                    |
| I (inflammation)<br>Astrocytic activation                  | GFAP                                                    | GFAP                   |                                                                            |
| Identification of co-path                                  | ology                                                   |                        |                                                                            |
| N (injury, dysfunction,<br>or degeneration of<br>neuropil) | NfL                                                     | NfL                    | Anatomic MR,<br>FDG PET                                                    |
| V vascular brain injury                                    | <b>?</b>                                                | ?                      | Anatomic<br>infarction, WMH,<br>abundant dilated<br>perivascular<br>spaces |
| 5 a-synaciem                                               | usyll-SAA                                               |                        |                                                                            |

Table 2. Intended uses for imaging and fluid biomarker assays



https://aaic.alz.org/diagnostic-criteria.asp#drafts

## White matter hyperintensities (WMH): Gold standard for SVD

- Described by Hachinski and colleagues in 1980s on a CT as patchy low attenuation in the periventricular and deep white matter, which they referred to as *leukoaraiosis*
- In a meta-analysis of 22 longitudinal studies, WMH were clearly associated with progressive cognitive impairment, a 2-fold increase in the risk of dementia and a 3fold increase in risk of stroke
- Associations have also been identified with gait, depression
- Inversely related to education
- Strongly associated with all vascular risk factors

Wardlaw JM, Valdés Hernández MC, Muñoz-Maniega S. What 10.1161/JAHA.114.001140. Erratum in: J Am Heart Assoc. 2

hyperintensities made of? Relevance to vascular cognitive impairment. J Am Heart Assoc. 2015 Jun 23;4(6):001140. doi: 2002006. PMID: 26104658; PMCID: PMC4599520.



### White matter hyperintensities (WMH): But still, just the tip of the iceberg

- Remain radiologic features on a T2 FLAIR MRI
- Multiple pathological mechanisms are hypothesized to underlie WMH
  - Vascular (elevated ICAM, BMP, enlarged perivascular spaces, CSF:plasma albumin, APP)
  - Neuronal (demyelination/lower LFB signal)
  - Inflammatory (gliosis, increased CD68, HIFs, MMP)
- Single snap-shot imaging, the temporal evolution of pathology is difficult. Not all are studied at the same time and not in many individuals



Fernando, Malee S et al. "White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury." Stroke vol. 37,6 (2006): 1391-8.

# Goal: To identify specific WMH pathology to target and reduce the cognitive sequelae of WMH



#### **Cerebrovascular imaging methods**

#### 

**Arterial spin labeling** 

- Quantitative measurement of cerebral blood flow (CBF) in ml/100g/min
- Rigorously tested imaging protocol and analyses pipeline (Reproducibility ICC = 0.81) and QA

Bernbaum, Manya et al. "Reduced blood flow in normal white matter predicts development of leukoaraiosis." *Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism* vol. 35,10 (2015): 1610-5

• WMH burden is associated with poor perfusion in WMH, normal appearing white matter and gray matter



 Perfusion deficit could be more focal but is yet unexplored

# Low cerebrovascular reactivity (CVR) is associated with greater WMH burden

#### **BOLD fMRI + breathhold/gas challenge**

- Breathhold experiment
- Simple design
- Easy to implement in impaired individuals
- 1-3 mm Hg change in EtCO<sub>2</sub> as opposed to a hypercapnia challenge >5 mm Hg
- Modest signal change but a whole brain signal, also called cerebrovascular reactivity (CVR)



MarkVCID: CVR adds to the predictive power to evaluate cognition after controlling for age, sex, education, and site.

Ni, Ling et al. "Lower Cerebrovascular Reactivity Contributed to White Matter Hyperintensity-Related Cognitive Impair Resting-State Functional MRI Study." *Journal of magnetic resonance imaging : JMRI* vol. 53,3 (2021): 703-711. Liu, Peiying et al. "Multi-vendor and multisite evaluation of cerebrovascular reactivity mapping using hypercapnia challenge." *NeuroImage* vol. 245 (2021): 118754.

#### CBF is reduced by 50% in the WMH CVR is almost (100%) exhausted in the WMH



Rane S, Koh N, Boord P, Madhyastha T, Askren MK, Jayadev S, Cholerton B, Larson E, Grabowski TJ. Quantitative cerebrovascular pathology in a community-based cohort of older adults. Neurobiology of aging. 2018 May 1;65:77-85.

### Imaging white matter injury and tract disruption

#### **Diffusion tensor imaging**

- Understand tissue microstructure
- Parametrized as fractional anisotropy (FA) or apparent diffusion coefficient (ADC)
- Can use multi-shell DTI and biophysical modeling to better characterize tissue (NODDI/DKI/DSI)
- Generic: Could mean demyelination, axon injury/rarefaction, edema,

| Normal Appearing<br>White Matter<br>(3-5 mm out) | ↑ FA ↑ NDI ↑ ODI<br>Normal F <sub>iso</sub> ↓ MD | <ul> <li>Intact Cells</li> </ul>             |
|--------------------------------------------------|--------------------------------------------------|----------------------------------------------|
| At Pick Ticouo                                   | ↓ FA ↓ NDI ↓ ODI                                 | <ul> <li>Cell loss and<br/>injury</li> </ul> |
| (2-3 mm out)                                     | Normal F <sub>iso</sub> Normal MD                | • No edema                                   |
| WMH                                              | ↓ FA ↓ NDI ↓ ODI                                 | <ul> <li>Cell Loss and<br/>injury</li> </ul> |
|                                                  | ↓ F <sub>iso</sub> ↓MD                           | • Cytotoxic edema                            |
|                                                  |                                                  |                                              |

Sudhakar T et al., AAIC 2023

### Imaging white matter injury and tract disruption

#### Myelin water fraction imaging

- Multi-echo acquisition
- Short T2 times (10–40 ms) are correlated with myelin water
- Intermediate T2 times (40–200 ms) as intra- and extracellular water
- longer T2 relaxation times (>1s) as free water







Park, Mina et al. "Myelin loss in white matter hyperintensities and normal-appearing white matter of cognitively impaired patients: a quantitative synthetic magnetic resonance imaging study." *European radiology* vol. 29,9 (2019): 4914-4921.

Meyers, Sandra M et al. "Simultaneous measurement of total water content and myelin water fraction i 3T using a T<sub>2</sub> relaxation based method." *Magnetic resonance imaging* vol. 37 (2017): 187-194.

## Multi-modal imaging with increased spatial specificity to WMH pathology







MCI participants showed significantly greater overlap (n = 32, 2.8 $\pm$ 1.9%) of these fibers and WMHs than NC (n = 22, 1.1 $\pm$ 0.9%).

WMHs affect thirty-five tracts mainly comprising of ipsilateral association, striatal, and thalamic fibers.

#### Do WMHs represent focal points of Wallerian degeneration along pathways connecting cortical/sub-cortical gray matter?



Cortical thickness and perfusion of cortical regions connected with tracts disrupted by WMHs is lower than when the tracts are not disrupted.

## WMH tract disruption is associated with specific cognitive symptoms

- Precuneus-cingulate track disruption was significantly associated with logical memory scores
- Precuneus-cingulate track disruption was not significantly associated with semantic fluency (vegetables)



## WMH tract disruption is associated with specific cognitive symptoms

- Anterior-posterior white matter tracts atrophy with age
- More MCI participants have WMHs disruption of this tract
- Target cortical regions have lesser gray matter
- Disruption of this path is associated with lower MMSE score



| Overlap with WMHs<br>(N) | sf<br>GM% | pc<br>GM%              | % MCI | MMSE |
|--------------------------|-----------|------------------------|-------|------|
| No (41)                  | 0.86±0.04 | 0.89±0.02              | 36    | 29±2 |
| Yes (12)                 | 0.84±0.06 | 0.87±0.05 <sup>*</sup> | 58    | 28±1 |
|                          |           |                        |       |      |

#### Can we build WMH-based individual cognitive profiles?



#### **Pathological investigations of WMHs**





## **Deep vs. Periventricular WMHs**



- Larger enlarged perivascular spaces were observed in deep WMHs than periventricular WMHs
- Greater myelin pallor was observed in periventricular WMHs than deep WMHs



#### Conclusion

SVD are complex. We need better ways to understand their pathology and their cognitive sequelae

Specifically, we show that

- WMHs overlap with multiple white matter tracts, mostly the ipsilateral association and cortico-striatal tracks
- WMHs could be associated with specific cognitive profiles
- Newer approaches for studying the vasculature have the potential to understand the pathology underlying SVD



#### UW ADRC The ACT Study

Thomas Grabowski Kimiko Domoto-Reilly Kristopher Rhoads Julia Owen Jeff Iliff Elaine Peskind Tejaswi Sudhakar Cole Anderson

#### Participants Funding

V

NIA KO1 AG055669 NIA RO1 AG069960 MTEC/DoD W81XWH-21-09-0021-129 Royalty Research Fund