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Dementia and Alzheimer’s disease have collectively been the number one cause of death for
women in the UK since 2011. Data shown are for England and Wales in 2023. Source: Office for
National Statistics, UK.



'}| Hypothesis

“We hypothesize that genetic predisposition, hormonal changes,
vascular health, and environmental exposures interact to drive
ancestry- and sex-specific differences in Alzheimer's disease risk
and progression.”



Develop novel sex-
specific, multi-ancestry
PRS for Alzheimer’s
disease.

Specific aims

Assess menopause-
related factors (age at
menopause, HRT,
contraception) in AD risk.

Determine the extent to
which AD shares
environmental
exposures, genetic
architecture, and causal
pathways with vascular
health, and assess the
long-term impact of
vascular risk factors on AD
risk.




Polygenic risk
score (PRS)

A PRS is a single-value estimate of
an individual’s genetic liability to
a trait or disease.
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PRS method comparison

Method Key Features Multi-ancestry strategy Strengths Limitations
Clumping + |Selects SNPs by p-value and|* Meta-analysis GWAS, then |Simple and fast; Widely Arbitrary threshold
Thresholding [LD-based clumping construct PRS used; Low computational |selection; Ignores
(PRSice2) * Unweighted PRS summation |burden ancestry-specific LD
« Weighted PRS summation structure; Can lose
genetic information
LDpred2 Adjusts SNP effects using LD|* Meta-analysis GWAS, then |Considers LD structure; Requires precise LD
structure (Bayesian method,; construct PRS Good prediction accuracy |estimation; Reference
uses individual-level or * Unweighted PRS summation |within ancestry groups; LD panels needed,;
reference LD matrices) « Weighted PRS summation Flexible tuning parameters |Moderate computational
complexity
PRS-CS Bayesian approach applying |* Unweighted PRS summation |[Robust PRS estimation; Less optimal in admixed
continuous shrinkage priors |+ Weighted PRS summation Accounts for LD structure |or diverse ancestry
effectively; Performs well in [samples compared to
single ancestry datasets
PRS-CSx Extended PRS-CS by * Unweighted PRS summation |Optimal for multi-ancestry |Needs high-quality

Integrates GWAS summary
stats from multiple ancestries

Weighted PRS summation
Meta PRS (meta-analysis the
PRS score)

datasets; Better predictive
performance across diverse
groups; Addresses cross-
population LD differences

GWAS from multiple
ancestries;
Computationally
demanding




AD GWAS Summary statitistics

European
EADB Stage | (exclude FinnGen; MVP; Japannase; South Korean;
UKBB); 15,617 cases and 4,012 cases and 3,962 cases and 1,583 cases and
36,928 cases and 63,137 396,564 controls 18,435 controls 4,074 controls 1,957 controls

controls
l—Meta analysis—l
The overview Current

PRSs were generated using various methods, including Bayesian shrinkage methods (LDPred2, PRS-CS, and PRS-CSx), and clumping and P RS d eve lo p m e nt

thresholding method applied in PRSice2

PRS development

\

Meta-analysis Weighted PRS summation Unweighted PRS summation

PRS weights combination were derived

Perform a meta-analysis of all GWAS, then from the ADGC dataset using logistic PRSs were constructed separately for each
construct a PRS. regression to predict AD (13,961 cases, GWAS and summed without weighting

18,055 controls)

|

PRSs were constructed separately for each
GWAS and summed them using weight
from ADGC

\

PRS evalution

The multi-ancestry PRS was evaluated in ADSP dataset (10,612 cases and 16,625 controls) (excluded subjects overlapped with ADGC) to identify
the best-performing PRS for predicting AD

\

The selected best-performing PRS method will be further regenerated by excluding the APOE region and applying the same approach to compute the
PRS

|

Validation of the best-performing PRS in multiple independent studies

All of Us (AoU) version 7 : 501 cases and 71,056 contirols (Multi ancestry)
Framingham Heart Study (FHS) : 579 cases and 3,514 controls (European)
Minority Aging Research Study (MARS) : 200 cases and 697 controls (Afrincan)




Comparison of the multi-ancestry approach PRS with European -

based PRS in ADSP

Multi-ancestry PRS-CS (Weighted PRS summation): Current works

case control OR[95% ClI] P AUC

ADSP !
African 1883 3373 1.21[1.11;1.32] 1.04e-05 0.70 E [TP—
Caribbean Hispanic 1696 2302 1.34[1.22;1.46] 7.69e-11 0.69 E ]
Native American . ¥ :
Hispanic 705 3282 1.14[1.02;1.27] 2.40e-02 0.69 :|_._|
1'0 14 1.8
QOdd ratios (log scale)
Vs.
European - based PRS
Country Ncases  Ncontrols OR 95% Cl P-value Hetlsqg HetPVal |
African American ADSP 1,108 2,325 1.14 [1.05-1.23] 1.23e-03 8
US LA Ancestry ADSP 1,629 2,456 1.27 [1.19-1.36] 3.31e-12 &

0910 12 14 16 182022
OR

Nicolas. A & Lambert, JC. Transferability of European-derived Alzheimer’s Disease
Polygenic Risk Scores across Multi-Ancestry Populations. medRxiv (2024)

PRS=WPRS,pg+WPRS; cent

WPRS,,/p+WPRS s

PRSe\= X1 (Bi * genotype; sample)



“I Aim 1: Developing

a multi ancestry e
PRS
rPRS=1
E— * o ePRS +

Huang, J.H, Kurniansyah. N, et al. The expected polygenic risk
score (ePRS) framework: an equitable metric for quantifying
polygenetic risk via modeling of ancestral makeup. medRxiv
(2024)




Aim 1: PRS overview:

Perform multi-ancestry
GWAS in ADSP R5
stratified by sex

Used the PRS to test
the association with AD
| and related traits in
ACT

Validate the finding in
| ROS/MAP, FHS,
MARS and MIRAGE

Construct the sex-
specific PRS
and evaluate in ACT

Computed ancestry
inferences in ACT,
ROS/MAP, FHS,
MARS and MIRAGE




“| Aim 2: Role of menopause-related
factors

Earlier age at menopause,
whether natural or surgical,
is associated with increased
risk of Alzheimer’s disease

and cognitive decline.

Growing evidence suggests
that hormone replacement
therapy (HRT) may help
mitigate this risk,
particularly when initiated
near the time of menopause.




Alzheimer’s begins in midlife—brain changes appear
decades before symptoms

Premenopause Perimenopause Postmenopause

Lisa Mosconi/Weill Cornell Medicine.

Images of the brains of three 50-year-old women, each at different stages of menopause, show higher energy levels in the premenopausal brain than in the
perimenopausal or postmenopausal brain.

Moutinho, S. Women twice as likely to develop Alzheimer’s
disease as men — but scientists do not know why. Nat
Med 31, 704-707 (2025)



Aim 2: Role of menopause-related factors
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Association of AD and cognitive performance with
age at menopause, HRT use, initiation time, and
duration of HRT in ACT

v

Validate the finding in FHS, ROS/MAP, MARS, and
MIRAGE




Aim 3: Role of vascular risk factors in AD

l AB, tau clearance

Obesity T Secretase activity

Hypertension Vascular risk
_ fctore | AD pathology
Heart diseases Vascular dysregulation
Hyperlipidemia
Diabetes
Synaptic dysfunction
Neurovascular Oligomers

dysfunction

Dementia

Hachinski, V. et al. Preventing dementia by preventing
stroke: The Berlin Manifesto. Alzheimer's Dement. 2019;

Does this differ by sex or ancestry? _
15: 961-984.
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Early

Middle

Late

Higher blood glucose in
early and middle
adulthood was
assoclated with earlier
and increased risk of
AD.

Zhang. X, et al. Midlife lipid and glucose levels are associated with
Alzheimer's disease. Alzheimer's Dement. 2023; 19: 181-193.



Aim 3: Role of vascular risk factors in AD

e

Construct the various risk factors PRS

Test the bidirectional association between AD and
vascular risk factors using PRS

Vascular trait PRS with AD

AD PRS with vascular trait

Test causality association using MR

\
Qnstrument variab@—»( exposure)—»( outcome)
/

N
)@

Assess long-term effects of vascular on AD risk
using longitudinal data (ACT & FHS), stratified by
PRS distribution




Analytical Goals of
the Project

Demonstrated the utility of an ancestry-aware, sex-
specific PRS to improve understanding of Alzheimer’s
disease risk across diverse populations.

QD Clarified the role of menopause-related and sex-
specific factors in shaping AD vulnerability in diverse
populations, informing prevention strategies.

Explored the directionality between AD and vascular
factors, highlighting shared pathways and potential reverse
causality across the ancestry and sex

@ Provide a comprehensive understanding of how vascular
factors genetically contribute to AD risk, enabling better

stratification and potential identification of intervention
targets for AD prevention.




@ Thank you
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